Self-funded PhD students only

Project code



Operations and Systems Management

Start dates

October and February

Closing date

Applications accepted all year round

Applications are invited for a self-funded, 3-year full-time or 6-year part-time PhD project, to commence in October or February.

The PhD will be based in the Faculty of Business and Law, and will be supervised by Dr Banu Lokman and  Dr Maria Barbati. Prof Murat Koksalan will be involved as a third, external supervisor. 

The work on this project could involve:

  • A decision support system design for the planning of electric vehicle charging infrastructure in the UK
  • Development of multi-objective optimisation approaches for facility location problems with cost, equity and efficiency objectives

Electromobility in transportation (EiT) is becoming more important with the increasing concerns on global warming. EiT not only reduces the carbon dioxide emissions, air pollution, and noise but also improves energy efficiency.

Transportation accounted for 33% of all carbon dioxide emissions in 2018 [1]. Since road transportation is the fundamental way of moving people and cargo across the UK, a substantial portion of total emissions from transportation is caused by road transportation [2].

Therefore, vehicle EiT provides a huge potential towards cleaner and green transportation. On the other hand, the market shares of battery-powered electric vehicles (EVs) and hybrid electric vehicles in the UK are still quite small. This is due to the limited number of charging facilities and mileage concerns of the customers.

The aim of this project is to design a decision support system for locating charging stations to support long-distance travel by EVs. Different from the existing approaches, in addition to cost concerns, this project will take equity concepts into consideration to develop a multi-period multi-objective optimization model that provides low cost solutions with a fair distribution of the charging services among different regions [3,4].

Since a unique solution to multi-objective optimization problems does not usually exist [5], the project will develop an algorithm to generate desirable efficient solutions by following an interactive solution strategy that incorporates the preferences of policy makers [6,7]. 


  1. UK Greenhouse Gas Emissions, Provisional Figures – Statistical Release (2018),
  2. UK Department for Transport (2018) The Road to Zero: Next steps towards cleaner road transport and delivering our Industrial Strategy,
  3. Barbati, M., and Piccolo, C. (2016). Equality measures properties for location problems. Optimization Letters, 10(5), 903–920. 
  4. Karsu, O., and Morton, A. (2015). Inequity averse optimization in operational research. European journal of operational research, 245(2), 343–359.
  5. Lokman, B., and Köksalan, M. (2013). Finding all nondominated points of multi-objective integer programs. Journal of Global Optimization, 57(2), 347–365.
  6. Lokman, B., Köksalan, M., Korhonen, P. J., & Wallenius, J. (2016). An interactive algorithm to find the most preferred solution of multi-objective integer programs. Annals of operations research, 245(1–2), 67–95.
  7. Ceyhan, G., Köksalan, M., & Lokman, B. (2019). Finding a representative nondominated set for multi-objective mixed integer programs. European Journal of Operational Research, 272(1), 61–77.

Fees and funding

PhD full-time and part-time courses are eligible for the Government Doctoral Loan

2021/2022 fees (applicable for October 2021 and February 2022 start)
PhD and MPhil

Home/EU/CI full-time students: £4,407 p/a*
Home/EU/CI part-time students: £2,204 p/a*
International full-time students: £16,300–£17,600 p/a
International part-time students: £8,150–£8,800 p/a

PhD by Publication 

External candidates: £4,407*
Members of staff: £1,720 

All fees are subject to annual increase. If you are an EU student starting a programme in 2021/22 please visit this page.

*This is the 2020/21 UK Research and Innovation (UKRI) maximum studentship fee; this fee will increase to the 2021/22 UKRI maximum studentship fee when UKRI announces this rate in Spring 2021.

Bench fees

Some PhD projects may include additional fees – known as bench fees – for equipment and other consumables, and these will be added to your standard tuition fee. Speak to the supervisory team during your interview about any additional fees you may have to pay. Please note, bench fees are not eligible for discounts and are non-refundable. 

Entry requirements

Entry requirements

You'll need a good first degree from an internationally recognised university (minimum upper second class or equivalent, depending on your chosen course) or a Master’s degree in an appropriate subject. In exceptional cases, we may consider equivalent professional experience and/or qualifications. English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0.

We welcome applications from highly motivated prospective students with a background in Operations Research (e.g. industrial engineering, business and management, computer science, mathematics and other relevant disciplines) with an interest in multi-criteria decision making. A familiarity with multi-objective optimization and facility location problems are desirable (not essential). We are also interested in candidates who are familiar with the interactive algorithms to solve multi-objective optimization problems. We encourage prospective students to design their own research strategies depending on their interest and core skills.

How to apply

We’d encourage you to contact Dr Banu Lokman at to discuss your interest before you apply, quoting the project code.

When you are ready to apply, you can use our online application form. Make sure you submit a personal statement, proof of your degrees and grades, details of two referees, proof of your English language proficiency and an up-to-date CV.  Our ‘How to Apply’ page offers further guidance on the PhD application process. 

Please also include a research proposal of 1,000 words outlining the main features of your proposed research design – including how it meets the stated objectives, the challenges this project may present, and how the work will build on or challenge existing research in the above field.

If you want to be considered for this self-funded PhD opportunity you must quote project code O&SM5110220 when applying.

October start

Apply now

February start

Apply now