Funding

Self-funded PhD students only

Project code

SEES4461018

Faculty

School of Earth and Environmental Sciences

Start dates

February and October

Closing date

Applications open all year round

This is a self-funded, 3 year full-time or 6 year part-time PhD studentship, to commence in February 2019 or October 2019. The project is supervised by Dr Mike FowlerProf James Darling and Prof Craig Storey.

The origins of granitic magmas through time is key to our understanding of crustal evolution on Earth. High Ba-Sr granites have geochemical characteristics traceable through related mafic magmas to enriched sources in the Sub-Continental Lithospheric Mantle (SCLM, e.g. Fowler et al., 2008).

Fowler and Rollinson (2012) argue that they are Phanerozoic equivalents of sanukitoids, which first appeared in the Neoarchaean as a result of evolving plate tectonic regime (e.g. steepening of the down-going slab). High Ba-Sr granites could, therefore, represent the continued expression of juvenile granite genesis that originated nearly 3 Ga ago.

On this project, you'll test their proposed mantle origin by defining and interpreting the distribution of the characteristic lithophile trace elements within xenoliths of the SCLM. The discovery of zircon in SCLM xenoliths from China (Liu et al., 2010), and silicate inclusions armoured in ophiolitic chromites (e.g. Robinson et al., 2015) increase the likelihood that there's still a lot to be discovered.

The work will include:

  • defining and interpreting the distribution of the characteristic lithophile trace elements within xenoliths of the SCLM
  • detailed study of the Streap and Rinibar xenoliths using electron microscopy and laser ablation ICP-MS

The SCLM beneath the Caledonian orogen has been sampled by numerous alkali basalt magmas; the xenoliths have been studied in great detail for many years.

Recent publications have demonstrated significant isotopic (Bonadiman et al., 2008) and chemical (Hughes et al., 2015) overlap with the proposed source of the Caledonian high Ba-Sr granites (Fowler et al., 2008).

It seems possible, then, that members of the xenolith suite represent source materials of the mafic parents to the granites – a hypothesis that can be tested with further study of the Streap and Rinibar xenoliths using modern micro-beam instrumentation, such as electron microscopy and laser ablation ICP-MS.

If confirmed, genuinely juvenile granites will need to be accounted for in global crustal growth models.

Funding

Self-funded PhD students only

Funding Availability: Self-funded PhD students only

PhD full-time and part-time courses are eligible for the Government Doctoral Loan

2019/2020 entry

  • Home/EU/CI full-time students: £4,327 p/a*
  • Home/EU/CI part-time students: £2,164 p/a*
  • International full-time students: £15,900 p/a*
  • International part-time students: £7,950 p/a*

Bench fees may also apply - for more information please contact the project supervisor.

By Publication Fees 2019/2020

  • Members of staff: £1,160 p/a*
  • External candidates: £4,327 p/a*

*All fees are subject to annual increase.

Entry requirements

Entry Requirements

  • A good honours degree or equivalent in a relevant subject or a master’s degree in an appropriate subject.
  • Exceptionally, equivalent professional experience and/or qualifications will be considered.
  • All applicants are subject to interview.
  • English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0.

Make an Enquiry

For administrative and admissions enquiries please contact tech-enquiries@port.ac.uk.

How to apply

To start your application, or enquire further about the process involved, please contact Dr Mike Fowler (mike.fowler@port.ac.uk), Prof James Darling (james.darling@port.ac.uk) and Prof Craig Storey (craig.storey@port.ac.uk) quoting both the project code (SEES4461018) and the project title.

You can also visit our How to Apply pages to get a better understanding of how the PhD application process works.

This site uses cookies. Click here to view our cookie policy message.

Accept and close