My research combines rock deformation with new laboratory tools for meauring rock fracture via Acoustic Emission, the laboratory analogue of tectonic seismicity, under controlled conditions of elevated pressure and temperature. Over the last 15 years I have developed these rock-physics methods to study fluid-rock coupled processes across a range of different systems, from large scale volcano-tectonic seismicity often recorded as a precursor to eruption (Benson et al, 2008), to local scale fracture and seismicity due to hydraulic overpressure (Bakker et al., 2016). I apply these tools to better understand the properties of crustal materials across the full spectrum of deformational styles, from brittle to plastic (e.g. Zappone and Benson, 2013).

Research Interests

Specific areas of active research include: 

  • Dyke movement and arrest: how material properties affect the movement of magmas and dyke structures during magma transport.
  • Mechanical properties of  crystal-bearing magma: Seismogenic lavas and eruption forecasting using laboratory AE location analysis and pore fabric characterisation.
  • Forecasting material failure and geological hazard via passive seismicity and attenuation.
  • Coupled Processes: linking Thermal-Hydraulic-Mechanical interactions in the shallow crust to passive seismic signals; Seismic precursors to earthquakes (‘Volcano-Tectonic’ and ‘Low Frequency’ harmonic events).
  • Porous Media & Anisotropy: Investigation of fluid flow (permeability) anisotropy from elastic-wave anisotropy and 3D pore fabric anisotropy.

This site uses cookies. Click here to view our cookie policy message.

Accept and close