Project code



School of the Environment, Geography, and Geosciences

Start dates

October, February and April

Application deadline

Applications accepted all year round

This project is now closed. The details below are for information purposes only. View our current projects here.

Applications are invited for a self-funded, 3-year full-time or 6-year part-time PhD project, to commence in October or February.

The PhD will be based in the Faculty of Science and Health, and will be supervised by Dr Nicholas Minter, Dr Steve Mitchell and Dr Anthony Butcher

The work on this project will involve:

  • Experimental palaeontology and fluid dynamics
  • Scanning Electron Microscopy
  • Hypothesis testing and statistical analysis

Arthropods are one of most speciose groups of animals on Earth, having undergone a series of diversification events and successfully colonised the marine, freshwater, terrestrial and aerial realms. It is therefore important to understand how the group has reached its present-day biodiversity and the potential biasing factors that might be affecting what is preserved in the fossil record both as a whole and in terms of the composition of individual assemblages and their reflections of communities. 

Terrestrial arthropods are frequently preserved in the deposits of lakes; whereas much of what we know about the early evolution of marine arthropods comes from deep-marine Cambrian-aged sites of exceptional preservation. Complementary to this, a record of fragmentary microfossils known as small carbonaceous fossils has been recognized increasingly over the last decade. These are preserved in shallow marine shelf deposits and provide evidence of previously cryptic biodiversity at the time and from different palaeoenvironments.

Actualistic experiments provide one of the best ways to study the likelihood of certain organisms being fossilized, and therefore any biasing factors that might be having an effect. Experiments have tended to focus on the pathways of decay and mineralisation once a carcass has been incorporated into the sediment; whereas the effects of hydrodynamic processes and the transport of organisms to their final resting place has received much less attention.

This project aims to answer questions on the action of wave processes on preservation potential in shallow water lacustrine and marine environments. It will integrate experimental taphonomy and hydrodynamics by using wave-generating flume tanks to replicate shallow water environments and test hypotheses on the effects of wave action and sediment movement on the decay, disarticulation and patterns of microwear for a variety of analogue terrestrial and marine arthropods. 

Fees and funding

Funding availability: Self-funded PhD students only. 

PhD full-time and part-time courses are eligible for the UK Government Doctoral Loan (UK and EU students only).


2022/2023 fees (applicable for October 2022, February and April 2023 start) 

PhD and MPhil

UK, Channel Islands and Isle of Man students 

  • Full-time: £4,596 (may be subject to annual increase)
  • Part-time and part-time distance learning: £2,298 (may be subject to annual increase)

EU students
(including Transition Scholarship)

  • Full-time: £4,596 (may be subject to annual increase)
  • Part-time and part-time distance learning: £2,298 (may be subject to annual increase)

International students

  • Full-time: £18,300 per year (may be subject to annual increase)
  • Part-time and part-time distance learning: £9,150 per year (may be subject to annual increase)

All fees are subject to annual increase. If you are an EU student starting a programme in 2022/23 please visit this page.

Bench fees

Some PhD projects may include additional fees – known as bench fees – for equipment and other consumables, and these will be added to your standard tuition fee. Speak to the supervisory team during your interview about any additional fees you may have to pay. Please note, bench fees are not eligible for discounts and are non-refundable.

Entry requirements

You'll need an upper second class honours degree from an internationally recognised university or a Master’s degree in an appropriate subject. In exceptional cases, we may consider equivalent professional experience and/or qualifications. English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0.

You should ideally have a background in palaeontology, geology, or biology/zoology. Experience of experimental design and statistical analysis is desirable but not essential.

We’d encourage you to contact Dr Nicholas Minter ( to discuss your interest before you apply, quoting the project code.

When you are ready to apply, you can use our online application form. Make sure you submit a personal statement, proof of your degrees and grades, details of two referees, proof of your English language proficiency and an up-to-date CV. 

Our ‘How to Apply’ page offers further guidance on the PhD application process. 

If you want to be considered for this self-funded PhD opportunity you must quote project code SEGG4871020 when applying.

October start

Apply now

February start

Apply now