Particle quantum entanglement, quantum correlation

The Quantum Science and Technology hub

Find out how we're studying quantum science and developing novel quantum technologies in our Quantum Science and Technology Hub (QSTH)

The first quantum revolution brought a completely new understanding of the physics behind everything we observe and the nature itself of our universe.

Phenomena like quantum superposition (the ability of a particle to be in two states at the same time), entanglement between two particles (the ability to instantaneously change the state of one particle by measuring its entangled counterpart, even at large distances) and quantum interference (in which particles interfere as waves) have been puzzling scientists around the world ever since – including Einstein.

With the advent of the second quantum revolution, these counterintuitive quantum phenomena have continued to trigger a global development of quantum technologies, with the capability of providing strategic benefits to the security, health and wellbeing of our society.

There's a rising global demand for faster computing power, more secure communication protocols, and high-precision metrological schemes for use in medical, environmental, and engineering settings, and this is stimulating a parallel demand for highly-skilled, knowledgable and capable quantum scientists, engineers, and AI, computing and biomedical experts.

And it's this need – along with the necessity to find industrial partners to take the growing quantum technological revolution forward – which has led to the creation of the Quantum Science and Technology Hub (QSTH), under the direction of Dr. Vincenzo Tamma.

The QSTH connects the University's core quantum science and technology staff with experts in related departments across the University – such as artificial intelligence (AI), biomedical engineering, medicine, computing, environmental science and gravitation – and with external collaborators on four continents.

Through the QSTH, we're working to achieve a deeper understanding of quantum science, to develop novel quantum technologies, and to boost the industrial use of quantum technologies at the crossover between different disciplines.


QSTH Founding Director

Dr. Vincenzo Tamma, University of Portsmouth, PO1 3QL | +442392 842452

University QSTH Advisory Board

FEATURE | How quantum physics is powering the new tech revolution

By understanding the quantum nature of the world around us, founding director of the Quantum Science and Technology Hub, Dr Vincenzo Tamma, wants to go beyond the world of classical physics
Vincenzo Tamma, University of Portsmouth
Read more

The QSTH aims to

  • Develop high-precision quantum sensors for medical and environmental applications, remote sensing, infrastructure planning and development (e.g. railway transport, autonomous cars), high precision navigation, testing fundamental laws in the universe
  • Develop a new generation of quantum simulators for medical and environmental applications
  • Secure long distance quantum communication
  • Develop superfast quantum computing devices
  • Explore the interface between AI, data-intensive science and quantum physics techniques to benchmark quantum technologies and quantum machine learning for next generation quantum processors
  • Further the study of quantum phenomena within the fields of quantum optics, matter waves, atom interferometry and the interface between quantum physics and gravity. 

QSTH members (by School)

School of Mathematics and Physics

Institute of Cosmology and Gravitation

School of Computing

School of Pharmacy and Biomedical Sciences

School of the Environment Geography and Geosciences

School of Mechanical and Design Engineering

School of Energy & Electronic Engineering:

School of Creative Technologies

  • Hui Yu, Professor of Visual Computing

International collaborators

  • Prof. Xiao-Hui Bao, University of Science and Technology of China
  • Prof. Paolo Facchi, University of Bari, Italy
  • Dr. Eran Ginossar, Department of Physics, University of Surrey, UK
  • Prof. Elizabeth Goldschmidt, University of Illinois, US
  • Prof. Mohammad Hafezi, University of Maryland College Park, U.S
  • Dr. Yonatan Israel, Physics Department, Stanford University, California, USA
  • Prof. Kurt Jacobs, U.S. Army Research Laboratory
  • Prof. Hyunseok Jeong, Department of Physics, Seoul National University, S. Korea
  • Prof. Michał Karpiński, University of Warsaw, Poland
  • Prof. Jaewan Kim, Korea Institute for Advanced Study, South Korea
  • Prof. Yoon-Ho Kim, Pohang University of Science and Technology, South Korea
  • Dr. Shingo Kono, Riken, Center for Emergent Matter Science, Japan
  • Prof. Jinhyoung Lee, Department of Physics, Hanyang University, South Korea
  • Dr. Peter Leek, Department of Physics, University of Oxford, UK
  • Prof. Alberto Marino, University of Oklahoma, US
  • Dr. William Munro, Nippon Telegraph & Telephone Basic Research Labs, Japan
  • Prof. Frank Narducci, Naval Postgraduate School, Monterey, U.S
  • Prof. Kae Nemoto, National Institute of Informatics, Japan
  • Dr. Daniel Oi, Department of Physics, University of Strathclyde, UK
  • Prof. Janwei Pan, University of Science and Technology of China
  • Prof. Ernst Rasel, Leibniz University, Hannover, Germany
  • Prof. Terry Rudolph, Department of Physics, Imperial College London, UK
  • Prof. Wolfgang P. Schleich, University of Ulm, Germany
  • Prof. Yanhua Shih, University of Maryland, Baltimore
  • Prof. Tim Spiller, Department of Physics, University of York, UK
  • Prof. Andrew White, University of Queensland, Australia

Work with us

Prospective PhD students are welcome to contact QSTH anytime and to look at projects advertised in our Physics postgraduate research pages.

Further schemes available for post-doctoral prospective applicants keen to join the QSTH – including Royal Society, Leverhulme Trust, EU Marie Curie Fellowships.

We're also very keen to welcome anytime at our QSTH visiting scientist interested in joint collaborations.


The QSTH has secured funding for quantum sensing technologies from the US Department of Defence and from industry (Xairos) and is also currently engaging with UK funding agencies and institutions.

Partnerships and links

We have links with a range of business and organisations in industry, and with other government and academic institutions, including:

  • Defence Science and Technology Laboratory
  • Erasmus partnerships with the University of Bari and the University of Palermo
  • HPE
  • IBM
  • Nabla Ventures and its portfolio companies in quantum technologies – including QLM Technology, Nu Quantum
  • Quantum Engineering Center for Doctoral Training at the University of Bristol
  • Quantum Technology Enterprise Centre (QTEC) at the University of Bristol
  • Xairos

    Strategic role and research excellence

    The work of the centre engages with the University's overall Strategy and with four of the University's Research Themes – Future & Emerging Technologies; Health & Wellbeing; Security & Risk, and Sustainability & Environment. The QSTH contributes to the UK Quantum Landscape and aligns with the UK Government's Industrial Strategy – in which Quantum Technology plays a major role – and responds to the predicted growth of the worldwide quantum technology market ($13.3B investment predicted by 2023).

    The work of the QSTH overlaps with many of the University's research areas of expertise – including the two areas listed below within our Physics research.

    The QSTH has also contributed to our excellent Research Excellence Framework 2021 results for Physics:

    • 100% of our research was judged to be internationally excellent or world-leading.
    • 100% of the impact was rated as having very considerable or outstanding reach and significance.
    • 100% of the research environment was judged as having the vitality and sustainability to produce internationally excellent or world-leading research and very considerable or outstanding impact.

    We were ranked top among modern UK universities and 6th among all UK universities for Physics.

    Press coverage and news


    Quantum information and sensing technologies

    We're conducting research into new quantum technologies, including applications for high-precision measurements, computing, and secure communication.

    Male BAME scientist studying the Zeeman effect
    Read more

    Quantum Optics and Quantum Foundations

    Our work in this area is studying the particle-like properties of photons, and wave-like behaviour of massive objects, such as electrons and atoms.


Glass tubes with quantum dots of perovskite nanocrystals, luminescing with all colors of the rainbow under ultraviolet radiation.
    Read more